L'innovazione farmacologica: quanto può migliorare gli outcome di salute e di cura?

Antonio Ceriello

Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain

Institut D'Investigacions Biomèdiques August Pi i Sunyer **Conflitto di interesse:** Astra Zeneca **Bayer Pharma BMS** Eli Lilly **MSD** Novo Nordisk **Roche Pharma**

Summary

- Do we need new treatments for diabetes?
- Is there an inexorable decline in β-cell function?
- Which are the new antidiabetic agents in development?

ARE DIABETES MANAGEMENT GUIDELINES APPLICABLE IN THE REAL WORLD?

• One-year, open-label, interventional study

- Primary care unit
- 90 consecutive patients with type 2 diabetes
- •ADA-EASD guidelines
- •Usual resources available (Met, SU, NPH Ins)

Verçosa et al. 2010

HbA_{1c} Change

Conclusion

Despite the efforts to obtain and maintain HbA1c <7% with the addition of the medication available in the primary care unit, there was a deterioration in diabetes control during this 1-year study.

Do we need new treatments for diabetes?

Yes. We do need new tools for the treatment of type 2 diabetes

Antidiabetic drugs in use

Antidiabetic drugs in use

Addition of Sitagliptin to Rosiglitazone and Metformin Study: HbA_{1c} Change From Baseline at 18 Weeks

Initial Combination Therapy for Type 2 Diabetes Mellitus: Is It Ready for Prime Time?

Bernard Zinman, MD

The American Journal of Medicine (2011) 124, S19–S34

The New IDF Therapeutic Algorithm

NOTE: The start with a prefixed combination of Metformin plus a DPPVI Inhibitor can be considered.

Is the progressive decline in β - cell function inexorable ?

Progressive Deterioration of β**-cell function**

Adapted from UKPDS Group. Diabetes. 1995;44:1249–1258.

Incretin Based Therapy

is still effective even in patients with long duration of disease

New Incretins

DPP-IV inhibitors

- Sitagliptin
- Vildagliptin
- Saxagliptin
- Alogliptin
- Linagliptin
- Dutogliptin

GLP-1 agonists

- Exenatide
- Liraglutide
- Exenatide LAR
- Albiglutide

Glucose control mediated by exenatide once-weekly (EQW)

DeYoung MB et al. Diabetes Technology & Therapeutics 2011; Kim et al. Diabetes Care 2007; Drucker et al. Lancet 2008; Bergenstal et al. Lancet 2010; Diamant et al. Lancet 2010

Masbad et al. Diabetes Obesity & Metabolism 2011

Change in HbA1c and bodyweight from baseline over 30 weeks

7-point self-monitored blood glucose profiles at baseline and week 30

Drucker et al. Lancet 372 October 4, 2008

New Classes of Antihyperglycemic Agents

- Dual Peroxisome Proliferator-Activated Receptor- α/γ Agonists (PPAR α/γ Agonists)
- Inhibitor of 11- β -hydroxysteroid dehydrogenase
- Inhibitors of sodium-dependent glucose transporter 2
- Ultra long acting insulins

Effects of α/γ PPAR activation

plasma lipid profile

Primary γ effect is to improve insulin sensitivity

Dual PPAR agonists

A Promising Approach

- Both dyslipidemia and insulin resistance appear to promote atherosclerosis in diabetics
- Likewise, improving lipid profile and insulin resistance both promise to improve clinical outcomes

Dual Peroxisome Proliferator-Activated Receptor-α/γ Agonists

- MK 767
- Ragaglitazar^{NN}
- Tesaglitazar^{AZ}
- Naveglitazar^{Lilly}
- Muraglitazar^{BMS}

- Malignant tumours in mice
- Tumors in rats and mice
- Subcutaneous fibrosarcomas
- Cardiotoxicity, sarcomas
- MI, stroke, TIA

Dual PPAR agonists: muraglitazar & tesaglitazar

– Muraglitazar

- Higher incidence of edema vs placebo¹
- Body weight increased up to 2.5 kg with 5 mg dose vs 1.5 kg with pioglitazone 30 mg²
- Increased heart failure (0.55% with 5 mg dose vs 0.07% with pioglitazone)³
- Elevated risk of CV death³

Tesaglitazar

- Higher incidence of edema and weight gain vs placebo⁴
- Increased serum creatinine by up to ~17%, which stabilized by 12 weeks but was not reversed fully upon discontinuation⁴
- Considered not to provide adequate benefit vs risk⁴

Aleglitazar: structurally distinct from TZDs & fibrates

Aleglitazar (a balanced PPAR- α/γ agonist)

Thiazolidinediones (PPAR-γ agonists)

Fibrates (PPAR- α agonists)

Aleglitazar

- Potent and balanced activity of PPAR- α versus PPAR- γ^{1}
- Structurally distinct from TZDs¹
- Unique gene signature profile compared with pioglitazone + fenofibrate in human cardiac myocytes and hepatocytes^{2,3}
- Evidence for desired impact on genes involved in lipid synthesis³ and inflammatory pathways²
 - Reduced expression of genes in LDL synthesis
 - Increased expression of genes in HDL pathway
 - Suppression of genes involved in tissue damage and inflammation in human cardiac myocytes

Effect of the dual peroxisome proliferator-activated receptor-α/γ agonist aleglitazar on risk of cardiovascular disease in patients with type 2 diabetes (SYNCHRONY): a phase II, randomised, dose-ranging study

Robert R Henry, A Michael Lincoff, Sunder Mudaliar, Michael Rabbia, Cathy Chognot, Matthias Herz

SYNCHRONY: Effects on HbA1c and Lipids

No statistical comparisons were made between aleglitazar 150 μ g and pioglitazone 45 mg Henry R et al. *Lancet* 2009;374:126

Aleglitazar Clinical Development Program

Study	Objectives
SYNCHRONY trial ¹	 Dose finding, determine efficacy, safety, and tolerability Primary Endpoint: HbA1c change from baseline at week 16
SESTA-R trial ²	- Evaluate effect (at 4x therapeutic dose, 600 $\mu\text{g})$ on GFR, renal plasma flow, and serum creatinine
ALECARDIO trial ³	 To determine whether aleglitazar reduces CV mortality and morbidity in patients with a recent ACS event and T2DM
	 Evaluate the effects of aleglitazar on other clinical endpoints of CV risk
	 Evaluate the effects of aleglitazar on glycemic control, the lipoprotein profile, blood pressure, and biomarkers of CV risk
	 Evaluate the tolerability and long-term safety profile of aleglitazar (e.g. fluid retention, heart failure, fractures, renal function, musculoskeletal adverse events and liver enzyme elevation)
ALENEPHRO trial ⁴	- Long-term safety data (52-weeks) and reversibility (8-weeks) with aleglitazar at therapeutic dose (150 $\mu g)$
Drug-drug interaction studies (ACE-I, ARBs, ASA, NSAIDs)	 PK/PD effects of concomitant treatment of aleglitazar and another agent on renal function in controlled setting
Renal Mechanistic Study	 Examination of renal effects in comparison to fibrate and pioglitazone

11-β-hydoxysteroid-dehydrogenase type 1 inhibitor

cortisone

cortisol

The 11-β-Hydroxysteroid Dehydrogenase Type 1 Inhibitor INCB13739 Improves Hyperglycemia in Patients With Type 2 Diabetes Inadequately Controlled by Metformin Monotherapy

Diabetes Care 33:1516–1522, 2010

Inhibitors of SGLT2

- Dapaglifozin
- Canaglifozin
- Seglifozin
- Remoglifozin
- ISIS 388626

Renal Handling of Glucose, Non-Diabetic Individual

Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial

Clifford J Bailey, Jorge L Gross, Anne Pieters, Arnaud Bastien, James F List

Efficacy – HbA_{1c}

Lancet 375:2223, 2010

Efficacy – Weight

Lancet 375:2223, 2010

Ultra Long Acting Insulins: Insulin Degludec

A 52-week treat-to-target trial comparing efficacy and safety of insulin degludec and insulin glargine both administered OD in a basal-bolus regimen with insulin aspart as mealtime insulin in patients with type 1 diabetes mellitus

(BEGIN[™])

Heller S, Diabetes July 2011; vol 60 (Supplement 1): OP-70

Study design

Conclusions

- Insulin degludec effectively improved HbA1c and is non-inferior to insulin glargine in basal-bolus therapy in type 1 diabetes
- Titration targets were achieved faster for patients treated in the insulin degludec arm
 - On average, patients treated with insulin glargine used 9-10% more insulin than those treated with insulin degludec (0.75 vs 0.82 U/kg)
- Patients treated with insulin degludec had 25% less risk of nocturnal hypoglycaemia than with insulin glargine
- Insulin degludec demonstrated a good safety and tolerability profile

A 52-week treat-to-target trial comparing efficacy and safety of insulin degludec and glargine both administered OD in a basal-bolus regimen with insulin aspart ±metformin ±pioglitazone in patients with type 2 diabetes mellitus previously treated with insulin

(BEGIN[™]: BB)

Garber AJ, Diabetes July 2011; vol 60 (Supplement 1): OP-74

Study design

pio: pioglitazone met: metformin IGlar: insulin glargine OD: once daily Garber AJ, Diabetes July 2011; vol 60 (Supplement 1): OP-74

Conclusions

Insulin degludec effectively improved HbA1c and is non-inferior to insulin glargine in basal-bolus therapy with insulin aspart in type 2 diabetes Insulin degludec achieved a 1.2%-point HbA1c reduction to 7.1% Insulin degludec resulted in significantly less risk of hypoglycaemia than insulin glargine

18% less risk of overall confirmed hypoglycaemia

25% less risk of nocturnal hypoglycaemia

Overall, insulin degludec demonstrated a good safety and tolerability profile

A 26-week, treat-to-target trial comparing efficacy and safety of a flexible insulin degludec dosing regimen with fixed insulin degludec dosing and insulin glargine, each given once daily \pm OAD therapy, in patients with type 2 diabetes mellitus

(BEGIN[™]: FLEX)

Meneghini L, Diabetes July 2011; vol 60 (Supplement 1): 35-LB

Study design

OAD: oral antidiabetic drug met: metformin pio: pioglitazone SU: sulphonylurea OD: once-daily

Meneghini L, Diabetes July 2011; vol 60 (Supplement 1): 35-LB

IDeg vs IGlar in T2: flexible dosing

Meneghini L, Diabetes July 2011; vol 60 (Supplement 1): 35-LB

Conclusions

- Insulin degludec can be dosed at any time of the day at a different time from day to day, while effectively improving glycaemic control in patients with type 2 diabetes mellitus
 - FPG is reduced more with insulin degludec dosed flexibly than insulin glargine dosed OD
- The rate of overall hypoglycaemia is unchanged with flexible dosing and there is a trend towards a decrease in nocturnal hypoglycaemia compared with insulin glargine
- With injection intervals ranging from 8 to 40 hours, daily administration of insulin degludec is flexible to the daily life of patients with diabetes and provides 'forgiveness' with regard to delayed or even missed doses

Conclusions

- Metabolic control is far from ideal in some countries
- New tools for the treatment of diabetes are very welcome
- Incretin-based therapy has the potential to restore β -cell function
- New classes are under development and may offer additional benefits

PERSONALIZING TREATMENT IN TYPE 2 DIABETES: AN INNOVATIVE APPROACH

AUTHORS

Antonio Ceriello, Vincenzo Armentano, Alberto De Micheli, Marco Gallo, Gabriele Perriello, Sandro Gentile.

On behalf of Associazione Medici Diabetologi (AMD)

www.aemmedi.it

Progetto SUBITO!AMD

Il grande progetto SUBITO! della diabetologia italiana (2009-2013) Partecipa al Programma FAD <u>SUBITO!AMD</u> <u>Personalizza.SUBITO!</u> (algoritmi terapeutici personalizzati)